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Abstract-The aim of this work is to formulate a geometrically exact theory of finite deformation
and finite rotation micropolar elastoplasticity to obtain a generalized nonlinear continuum frame­
work. To this end, the classical deformation map is supplemented by an independent rotation field
to yield an enhanced configuration space. Thereby, the rotational part of the formulation is
consequently parameterized in terms of the rotation (pseudo) vector via the Euler-Rodrigues
formula. Then, micropolar hyperelasticity and multiplicative elastoplasticity are conceptionally
derived as in the classical Boltzmann continuum. The proposed theory is consequently developed
in a modern geometry oriented fashion. Linearization of the kinematics retrofits the well-known
structure of the micropolar geometrically linear theory.

I. INTRODUCTION

Generalized continuum descriptions involving independent rotations have been introduced
by the brothers Cosserat (1909) at the beginning of this century. Further emphasis was
directed to this and related theories by a community of researchers several decades later
among whom we find such prominent members as Giinther (1958), Koiter (1964), Mindlin
(1964), Toupin (1964), Neuber (1966), Schaefer (1967), Eringen (1968), Lippmann (1969),
Besdo (1974), Reissner (1987) and references therein. These researchers were mainly
attracted by the theoretical challenges and beauties of noneonventionaIcontinuum theories.
Large-scale numerical computations have not been in the scope of those approaches. In
comparison to the application within continuum mechanics the Cosserat approach has been
adopted more extensively to nonlinear models in structural mechanics. Geometrically exact
models for rods, plates and shells have often been referred to as one-director Cosserat lines
and surfaces. Within those formulations the Cosserat ideas have been compiled to modern
mechanics incorporating finite rotations and finite strains, notably the works on rods and
shells by Simo and Vu-Quoc (1986) and Simo and Fox (1989) and references therein.

Recently, renewed interest in micropolar continua arose within the context of local­
ization computations. Today it is fairly well understood that numerical modelling of
materials exhibiting strain softening or nonsymmetric material operators due to non­
associated flow, for example, leads to a pathological mesh dependence of the post-peak
response within the classical continuum description when the deformation pattern obeys a
highly localized zone. Researchers looking for a remedy for this deficiency revived the
micropolar approach since it turned out that rotations are an essential ingredient in failure
bands where shear failure mechanisms playa dominant role. This new approach to regu­
larize the mesh sensitivity of localization computations was perused mainly by Miihlhaus
and Vardoulakis (1987), Miihlhaus (1989), de Borst (1991,1993), de Borst and Miihlhaus
(1992), Steinmann and William (1991) and Dietsche et al. (1993).

Nevertheless, these authors argued either along the lines of a geometrical linearized
description or adopted two-dimensional rate formulations in the sense of hypoelasticity
together with a straightforward translation of the small strain and curvature flow rules to
the nonlinear regime. Motivated by the results of the works cited above and in extension
of known formulations it is the aim of this paper to develop a fully nonlinear continuum
theory of geometrically exact finite deformation and finite rotation micropolar elasto­
plasticity. To this end, the terminology in modern geometry oriented continuum mech­
anics is used whenever possible to ease comparison with the classical continuum description.
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For a comprehensive account on the terminology ofpush~forwardand pull-hack or the Lie
derivative of spatial tensor fields within classical nonlinear continuum mechanics see the
textbook by Marsden and Hughes (1983), for example.

The novel results of the approach advocated in this contribution are: the theoretical
framework of a fully three-dimensional nonlinear continuum theory invoking independent
rotations, the consideration of large strains together with large rotations parameterized by
the rotation (pseudo) vector, the reduction of the originally third-order curvature tensors
to second-order curvature measures, the postulate of a stored energy function to achieve
micropolar hyperelasticity, the introduction of a geometrically exact multiplicatil'e format
of elastoplasticity, the derivation of associated nonstandard flow rules and finally the
embedding of the theory within a variational principle.

An outline of the paper is as follows: first, the enhanced configuration space is defined
and different strain and curvature measures are introduced. Then stress and couple stress
measures are derived by resortiI).g to the Cauchy theorem and representations with respect
to different configurations are established. After postulating multiplicath'e decompositions
of the deformation gradient and the independent rotation tensor into an elastic and an
inelastic part, different configurations associated with these decompositions are defined,
and strain and curvature measures are connected by push-forward and pull-hack operations.
To finalize the kinematical description, rates of the strain and curvature measures are
examined in detail. For the sake of comparison with the conventional Boltzmann
continuum, rates of the stress and couple stress measures are developed in the sequel. Next,
the hyperelastic part of the stress and couple stress response is formulated by postulating
an isotropic stored energy function in terms of the nonsymmetric strain and curvature
tensors. Then the associated flow rules for the plastic parts of the deformation gradient and
the micropolar rotation are derived by exploiting the Clausius-Duhem inequality and the
postulate of maximum dissipation. Finally, issues concerning the formulation of the balance
equations and the micropolar Dirichlet variational principle together with its Hesse matrix
are addressed.

2. MICROPOLAR NONLINEAR KINEMATICS

2.1. Configuration space
Let flJ 0 c IR 3 be the reference configuration of a material body with boundary ?!4 0 and

introduce the differentiable nonlinear deformation map qJ(X): .Ill0 --+ IR 3 taking particles
labelled by their position X in the reference configuration to their placement x = qJ(X) in
the spatial configuration flJ. It is assumed throughout that the deformation map possesses
an invertible linear tangent map F = "\lxqJ, denoted by the deformation gradient, with
J = det F > O. Within the concept of convected coordinates the deformation gradient maps
base vectors G/ defined in the tangent space TflJ 0 to base vectors g; in the tangent space T:?J
and therefore allows the representation F = g; ® G/.

Throughout this paper capital and lower-case bold-face letters denote vectors or tensors
referred to the reference or the spatial configuration, respectively. Equivalently, capital or
lower-case indices are attached to material or spatial quantities with the understanding that

i == I.
The enhanced continuum representation is obtained by introducing an additional

independent rotation field R: JB 0 --+ 50(3) defining the orientation of a separate triade of
base vectors g, attached to each material point X which rotates independently with respect
to the material triade of base vectors G/. Equivalently, we may say that the independent
rotation field R: f1J --+ 50(3) defines the orientation of an additional triade of base vectors
(;/ attached to the image x = qJ(X) of each material point which rotates independently with
respect to the spatial triade of base vectors g;. Therefore, we have the representation for
the independent micropolar rotation

(I)

Then the enhanced configuration space of a micropolar continuum is introduced as
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C6 = {(tp,R): (lAo --+ ~3 X SO(3)}.

Here SO(3) denotes the group of proper orthogonal transformations.
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(2)

Remark. The field of orthogonal transformations R = exp (spn (9)) is parameterized
by the independent rotation (pseudo) vector field 9: fJ o --+ ~3. Then 9 defines the axis of
rotation with the rotation angle (J = 11911 and constitutes the only eigenvector with (real)
unit eigenvalue for R' fJ = fJ and the only eigenvector with (real) zero eigenvalue for
spn (fJ)' fJ = O. The exponential map

00 I
exp ( .) = L -, (.)" :so(3) --+ SO(3)

n= on.

is expressed in closed form by the Euler-Rodrigues formula

sin (J I-cos (J
exp (spn (9)) = cos (JI + -(J- spn (fJ) + (J2 fJ ® fJ. (3)

Here so(3) denotes the set of skew-symmetric tensors. With the definition of the isotropic
third-order Ricci-tensor (permutation tensor) together with its relation to the symmetric
second order unit tensor I and the skew-symmetric fourth-order unit tensor .pkw

the skew-symmetric tensor associated with an axial vector follows as

3
spn(fJ) = -e'fJEso(3)

and vice versa the axial vector associated with a skew-symmetric tensor is extracted as

3 3 3
axl (spn (fJ)) = - ~e: spn (fJ) = ~e: e' fJ = fJE ~3.

(4)

(5)

(6)

Example. Define the standard basis E, in ~3, and consider an in-plane rotation about
the Eraxis with fJ = (JE 3• Then spn (fJ) and exp (spn (fJ)) have the matrix representation
relative to E,

-(J

o
o

0] [COS (J
~' exp (spn (fJ)) = Si~ (J

- sin (J

cos (J

o
(7)

2.2. Micropolar strain
The motivation for the choice of the micropolar strain measures is the definition of

the classical right and left stretch tensors U = R" F and v = F' R', where R denotes the
continuum rotation. Consequently, multiplicative decompositions of the deformation gradi­
ent F into the independent micropolar rotation Rand the nonsymmetric micropolar right U
respectively left vstretch tensor are introduced within the setting of micropolar continuum
theory as
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Fig. l.Micropolar decomposition of the deformation gradient.

(8)

(see Fig. I). Thereby, the micropolar stretch tensors U and vcontain the difference between
the continuum and the micropolar rotation Rt .R in addition to the classical stretch tensors
U and v. In analogy to the Cauchy-Green and Finger tensors C and b of the Boltzmann
continuum, the micropolar stretch tensors may be conceived as the pull-back (respectively
the push-forward) of the spatial material metric tensors g and G- I

(9)

Expressing the strain measures with respect to the convective base vectors highlights their
relation to the metric tensors by pull-back and push-forward operations through F and R

- -/ J - lJ -U = gijG ® G and v = G gi ® g,. (10)

Under a superposed rigid body motion with x* = c+Q' x and R = Q' R, where QESO(3),
the strain measures transform as

U* = U and v* = Q'V'QI

and we conclude that vrepresents an objective strain measure.

(II)

Remark. Note carefully that the micropolar stretch tensors U and vcoincide with the
classical stretch U and v in the case of identical micropolar R and continuum rotation R
i.e. R1

• R = I.

2.3. Micropolar curvature
The variation of the independent triades, i.e. the variation of the orientation of the

material particles within a body is conceived as an additional measure of deformation.
Therefore, we define the four possible third-order curvature tensors as

3 _I - K 3 - - k
K = R 'VxR = spn(KK)G, K= VxR'R1 = spn(Kdg,

r = VxR' R t = spn (rK)GK, .y = RI. VxR = spn (Yk)gk, (\ 2)

Obviously, these curvature measures are related through Rand F by pull-back and
push-forward operations, which merely changes the base vectors. It is useful to express the
curvature tensors with respect to the convective base vectors
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3 ?oI?oJ k'Y = KJJk\J ® \J ® g .

1067

(13)

Since spn (KK)' spn (Kk)' spn (rK) and spn ('Yk) are skew-symmetric tensors, i.e. "UK = - "JIK,
the third-order tensors may be reduced to second-order curvature measures

Clearly, these curvature measures are connected as

(14)

K = R"K'F = R',r = 'Y'F,

r = R'y'F = K'F = R'K,

K = R'K'F- 1 = r'F- 1 = R''Y

'Y = R',r'F- 1 = K'F- 1 = R'·K. (15)

These relations are symbolically represented in the curvature tetrahedron in Fig. 2. The
spatial curvature tensor K transforms in the same manner as the spatial metric tensor.
Nevertheless, the curvature does not define an invertible mapping, e.g. of line elements, in
the sense of the deformation gradient or the rotation tensor.

Under a superposed rigid body motion with x* = c+Q' x and R* = Q' R, where
Q E SO(3), the third-order curvature measures transform as

Therefore, the second-order representations transform as

(17)

and we conclude that K represents an objective curvature measure. In analogy to the
definition of the left micropolar stretch tensor v= F' R' and to formulate constitutive
relations in the spatial setting we introduce the objective left curvature tensor k = r . R'
with k* = Q' k ' Q' in contrast to the right curvature tensor K = R" k . R.

Remark. The relations between the curvature measures K, K, rand 'Y and the rotation
(pseudo) vector 0 are established in Appendix A.

Fig. 2. Curvature tetrahedron.
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3. MICROPOLAR STRESS AND COUPLE STRESS

In the case of micropolar continua the Cauchy, or true couple stress tensor m, and
couple stress vector tm are defined by analogy to the Cauchy or true stress tensor (J and
stress vector t, respectively, via the Cauchy theorem by the linear mappings in the spatial
configuration fJ6

(18)

Here n denotes the normal to an element of surface area da at x E afJ6 in the spatial
configuration. Due to the Cauchy postulate the Cauchy stress and couple stress vector
depend exclusively on the surface normal. The Cauchy theorem follows from equilibrium
of stresses and couple stresses at an infinitesimal tetrahedron element. The Cauchy stress
and couple stress tensors are weighted with the determinant of the Jacobi transformation
to render the Kirchhoff stress and couple stress tensors in PlJ as

(19)

The Nanson formula n da = iF- t
• N dA together with the configuration independency

requirement of the resulting infinitesimal surface traction and torque, i.e. t da = T dA and
tm da = Tm dA, allows one to refer the true stress and couple stress tensors to an element
of surface area in the reference configuration dA at X E oPlJo to yield the definition of the
first Piola-Kirchhoff stress and couple stress tensors in (PlJ 0, PlJ)

Equivalently, two-field stress and couple stress measures in (fJ6 u. fJ6) follow as

(21 )

Finally, two-field Biot stress and couple stress measures in (Yl 0, fJ6 u> with associated rotated
stress and couple stress vectors t = HI. T and f m = HI. Tm are obtained as

and are given by a constitutive assumption below. The different stress and couple stress
measures and their conjugate strain and curvature measures are shown in Fig. 3.

8 0 8

E),M)->
F T,J."

F,r ->

E\,M) '\.
g,K.

U,K '\.
tT,1n

8 u

U il
T,fJ./

il,"f' /

Fig. 3. Stress and couple stress measures and conjugated variables.
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4. MICROPOLAR KINEMATICS OF FINITE ELASTOPLASTICITY

4.1. Elastoplastic multiplicative decompositions
In analogy to the multiplicative decomposition of the deformation gradient F into an

elastic and a plastic contribution proposed originally by Lee (1969) within the classical
Boltzmann continuum, an equivalent phenomenological decomposition is postulated for
the micropolar rotation tensor Rwithin the present formulation ofa micropolar continuum,
i.e.

(23)

Within single crystal metals the multiplicative decomposition of the deformation gradient
is motivated micromechanically by the dislocation flow along crystalline slip systems (Fp )

followed by a distortion of the lattice (Fe). In the context of micropolar elastoplasticity the
viewpoint is adopted that the dislocation flow influences the orientation of the independent
triade as well, thus giving rise to the notion of the plastic micropolar rotation Rp, which is
complemented by the elastic micropolar rotation Re • Phenomenologically, an unloaded
stress and couple stress-free configuration is therefore locally defined by F; 1 together with
R~. In the following, as a consequence of these considerations, the objective stress and
couple stress response will depend solely on the elastic parts of the (spatial) left stretch and
curvature measures. For a comparison, see the analogous discussion concerning this topic
within the Boltzmann continuum by Simo and Miehe (1992).

The elastoplastic decompositions introduce a set of configurations associated with the
elastic and plastic parts of the deformation gradient and the micropolar rotation. These are
shown in Fig. 4. Here fJl o, fJlp and fJI denote the reference, the plastic intermediate and the
spatial configurations, respectively. Micropolar rotation with respect to the reference or the
spatial configurations fJI°or fJI introduces the (micro-)rotated configurations fJIRand fJI u.
Finally, the multiplicative decomposition of the micropolar rotation defines the elastically
(micro-)rotated configurations fJI R, and fJI u.. and the plastically (micro-)rotated con­
figurations :JBRand fJI u ' respectively.

p p

It has to be emphasized that no independent decomposition into an elastic and a plastic
part is necessary for the micropolar curvature since the multiplicative decomposition of the
micropolar rotation induces an additive structure for the curvature, e.g.

Fig. 4. Configurations associated with the multiplicative decompositIOns.

c;::"c:: 11oSl.•r
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(24)

The different strain and curvature measures associated with these configurations and their
connections by micropolar push-forward and pull-back are defined in the following sections.
The definitions of micropolar push-forward and pull-back are given in Appendix B.

4.2. Micropolar strain
A possible set of (contravariant) strain measures associated with the multiplicative

decompositions is shown in Fig. 5. These strain measures are constructed by combining
either the total, the elastic or the plastic parts of the deformation gradient F and the
micropolar rotation it Clearly, the strain measures in the different configurations are
connected by micropolar push-forward and pull-back. As a paradigm consider the relation
between the spatial metric g, the elastic micropolar right stretch tensor De and the micropolar
right stretch tensor D

g~1 = (J)*(D-I) = F.D~I.R'

= (J)~(De~ 1) = Fe' De~ 1. R~. (25)

However, the most important strain measures for the subsequent derivations ofconstitutive
equations are the spatial micropolar left stretch tensor vas the micropolar analogue to the
Finger tensor within the classical continuum theory

v = (J)*(G~ I) = F'G~ I'R'

= (J)~(vp) = Fe' vp' R~

and the spatial elastic micropolar left stretch tensor ve with

v =(J) (D~l)=F'D-l'R'
e * p p

= C1l~(G; I) = Fe' G; I. R~.

(26)

(27)

Remark. Observe the resulting multliplicative structure of the micropolar strain
measures, which is also typical for multiplicative elasoplasticity within the Boltzmann
continuum.

4.3. Micropolar curvature
In accordance with the proposed multiplicative decomposition of R = Re ' Rp the

(covariant) curvature measures decompose additively into an elastic and a plastic part,
consider the micropolar right or the spatial curvature tensors, for example

Bo

0-1

a-I
0-1

p

F,R

Fig. 5. Micropolar strain measures.

B
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(28)

respectively. The second-order representations of these curvature measures are connected
by micropolar push-forward and pull-back

3 _

K = axl(K) = RIo" of = $*(,,)p p p p • (29)

By analogy to the definition of the left micropolar stretch tensor v= RoD 0 R' the micropolar
left curvature measures, as shown in Fig. 6, are introduced as

k = RoKoR' = ReokoR~

ke = RoKeoR' = ReokeoR~

k - R0 K 0 R' - R 0 k 0 R'p - p - e p e· (30)

The left and the elastic left curvature measures k and ke are essential for the subsequent
derivations of the constitutive laws.

Remark. Observe the additive structure of the curvature measures K = Ke+Kp'
k = ke+kp and" = "e+"p introduced by the multiplicative decomposition of F = Fe 0 Fp
and R = ttoRp •

5. MICROPOLAR KINEMATICAL RATES

5.1. Micropolar strain rates
Due to the multiplicative decomposition of F = Fe 0 Fp and R = Re0 Rp the spatial

velocity gradient I and the micropolar spatial spin n and its axial vector (J) decompose
additively in !Jl

8 0 8

K= H k=
K.+ k.+
K p kp

ilp
k=

He

k.+
kp

(31 )

(32)

Fig. 6. Micropolar curvature measures.
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(33)

The material time derivative of the micropolar right stretch tensor D is easily derived as

-0 = R'o[I-n]oF. (34)

Applying the micropolar push-forward to this result renders the micropolar Lie time
derivatives of the spatial metric

~c(g) = I-n. (35)

The definition of micropolar Lie time derivatives is given in Appendix B. The material time
derivative of the spatial micropolar left stretch tensor vdefined in :!l is obtained as

(36)

Finally, we derive the material time derivative of the spatial micropolar elastic left stretch
tensor ve defined in :!l as

(37)

Remark. Note carefully that the micropolar Lie derivative ofthe spatial metric coincides
formally with the structure of the micropolar strain measure used by Gunther (1958) in the
geometrically linear micropolar continuum elm = V,u-spn (w), where u and ware the
infinitesimal displacement and rotation vectors.

Remark. Observe that neither the spatial angular velocity vector w nor the material
angular velocity vector ro = R' °w can be integrated, since in general they are not an exact
differential form and therefore cannot be regarded as the rate of change of any vector.
Exceptions to this rule are rotations about a fixed axis.

Remark. The angular velocities wand ro obey the vectorial characteristics of the
transformation and the parallelogram rule. In contradiction, the rotation (J is a (pseudo)
vector since the parallelogram rule for two subsequent rotations (J\ and (J2 is not valid. The
resulting rotation (pseudo) vector (J3 of two subsequent rotations (JJ and (J2 follows as

(38)

which is a result of the underlying multiplicative update for the associated rotation tensors
R3 =R 2 oR!.

5.2. Micropolar curvature rates
Due to the multiplicative decomposition of R = Re° Rp the spatial gradient of the

micropolar spatial angular velocity vector Vxw decomposes additively in :!l

(39)

Since the micropolar spatial spin n E so(3) is skew-symmetric, the material time derivatives
3

of the third-order material right curvature tensor K and its second-order representation K
are derived as

(40)

Equivalently, the micropolar Lie time derivative of the spatial curvature follows as
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with additive decomposition into elastic and plastic parts
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(41)

(42)

The material time derivative of the spatial left curvature tensor k defined in !1J is obtained
as

(43)

Finally, the material time derivative of the spatial elastic left curvature tensor ke defined in
!1J is derived as

(44)

Remark. Observe the additive structure of all rates of the curvature measures, e.g.
k = ke+kp , etc.

Remark. The micropolar Lie derivative of the spatial curvature coincides formally with
the structure of the micropolar curvature considered by Gunther (1958) in the geometrically
linear micropolar continuum "lin = Vxw, where w is the infinitesimal rotation vector.

6. MICROPOLAR STRESS AND COUPLE STRESS RATES

The rates of the stress and couple stress measures are important for the linearization
of the weak form of the balance equations in the material fJ4 0 and the spatial configuration
!1J and are therefore connected to the fourth-order Lagrange and Euler material operators.
The material rates of the first Piola-Kirchhoff stress and couple stress tensors t I and 1\1 I

governing the incremental balance equations in the reference configuration are computed
as

(45)

In the case of micropolar hyperelasticity with stored energy function W = Po'¥ the Lie
derivatives of the first Piola-Kirchhoff stress and couple stress tensors follow as

f£c(I:.') = (1('!£: [F-0' F] +um!£: VxW,

f£c(M\) = mu!£ : [F - 0 . F] +mm!£ : VxW

with the Lagrange material operators

UU!£ = R'o50W'R', um!£ = R'05KW'R'

'M!£ = R'oiow'R', mm!£ = R.aiKw.R'.

On the other hand the nominal stress and couple stress rates defined as

(46)

(47)

(48)

govern the incremental balance equations in the spatial setting and are identical to the push­
jorwardof
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. D . D
1:' =-(J(1"F-') and M' =-(Jm'·F-').

1 Dt I Dt (49)

The nominal rates are connected to the material rates via

d = n-I'(1+[I:g](1 and m= m-l·m+[I:g]m.

Equivalently, the Truesdell rates are defined as

2"c«(1) = n-I'(1-(1'!!'+[I:g](1,

2"c(m) = m-I'm-m'U'+[I:g]m

and are related to the Oldroyd rates with i = In + [I : g]T and Ii = Jm + [I : g]Jl through

(50)

(51 )

2"c(T) = J2"c«(1) = i-I'T-T'!!',

2"c(Jl) = J2"c(m) = Ii -I' Jl- It"!!'. (52)

In the case of isotropic micropolar hyperelasticity the Lie derivatives of the Cauchy stresses
and couple stresses rendering the objective Truesdell stress rate in the case of the Boltzmann
continuum are determined as

2"c«(1') = ,1(1If: [I-!!] + urnlf: VxW

2"c(m') = rnalf: [I-U] +rnrnlf: VxW' (53)

Here the Euler material operators follow either as the push-forwardof the Lagrange material
operators or in analogy to the representation in Miehe (1993) within the Boltzmann
continuum as

MIf = r'v·a;.w·v', urnlf = rIV·a;k W · V'
rnu If = J- IV. a~. W· v', rnrnIf = r 'v .a~k W· v'. (54)

7. MICROPOLAR CONSTITUTIVE EQUATIONS

7.1. Micropolar hyperelasticity
In the case of purely mechanical micropolar hyperelasticity the sum of the stress and

couple stress power 1": 2"c(g) and JlI: 2"c(") equals the change in free Helmholtz energy '1',
I.e.

(55)

The Helmholtz free energy is assumed to be an isotropic scalar valued tensor function of
the deformation and curvature measures, i.e.

'I' = 'I'(U, K, G - ') = 'I'(v, k, g).

Then the change in Helmholtz free energy follows as

. 0'1' 0'1'. 0'1'. a'P .
'I' = au: 0 + 8K : K = av : v+ ok : k

with the micropolar strain and curvature rates

(56)

(57)
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u= j{1. !l'.(g)' F, V= !l'.(g)' v+ [V' 0 1_01. v]

K = j{1·!l'.(lC)·F, Ii: = !l'.(lC)·v+[k·OI_OI·k].
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(58)

(59)

Following standard arguments the elastic constitutive equations for the spatial stress and
couple stress are derived

_ 0'P 0'P
r l = p R'--'F1 = Po-'vt

o 00 ov

where the following holds due to isotropy

(60)

[vt .0'P _ 0'P •vt]. at = 0 and [kt .0'P
ov ov . ok (61)

Remark. Note carefully the analogy to the determination of the Kirchhoff stress in
terms of the spatial Finger tensor b in the case of a hyperelastic Boltzmann continuum
r = POOb'P' b advocated in Truesdell and Noll (1965).

7.2. Micropolar stored energy function
Without loss of generality it is assumed that the micropolar stored energy function

may be decoupled into separate strain energy and curvature energy contributions

(62)

where S Wand C Ware isotropic scalar functions ofa nonsymmetric tensor valued argument.
Due to the representation theorems by Wang (1969) these functions are expressed by sets
of irreducible basic invariants

sI~ym = [vsym]n : I, 'I~kw = [VSkWP: I, SI':'x = [[vsym]n • [V'kWP] : 1

cr;m = [ksym]n: I, CI~kw = [kSkwp: I, <'Ir;ix = [[ksymy. [kskW]2] : 1 (63)

with the symmetric and skew-symmetric parts of the nonsymmetric micropolar left stretch
and curvature tensors vand k. Then the stored energy functions are represented by

s W = 'W(vsym yskw) = 'W('['ym sp-ym 'jSym s rskw s/mix 'Imix), 1,2'3,12, 1,2

c W = C W(ksym kSkW) = c W(C rsym cp-ym CjSym c['kw c/mix c/mix), 11 , 2 , 3 , 2, 1 , 2 • (64)

In the following the explicit dependence of the strain energy function on the mixed
invariants is omitted for the sake of simplicity. With these preliminaries at hand, the
Kirchhoff stress and couple stress associated with a given stored energy function are
evaluated as

(65)

Remark. The derivatives of the basic invariants sI~ym and '/~kw with respect to their
arguments are computed as
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a,/,ym
__n_ = n[vsym]n- I

8v '
8'I~W___" _= _ 2vskw

8v
(66)

For the invariants under consideration we have

a"1ym _,
----.·v = v'

GV

asI't"
- -, [-2 b)'-av ·v = v - ,

(67)

(68)

(69)

(70)

where we introduced the symmetric Finger tensor b = v· v' = F· F' which tends to v" if the
micropolar rotation R tends to the continuum rotation R.

Example. A simple planar micropolar hyperelastic model is represented by the extension
of a compressible volumetric deviatoric decoupled neo-Hooke material to the micropolar
case. To derive constitutive models with decoupled volumetric deviatoric behaviour for the
stress part we follow the approach advocated in Simo et al. (1985) within the nonpolar
continuum. To this end, the left stretch tensor v is decomposed multiplicatively into an
isochoric and a volumetric contribution

v= JI/3V ~ V= J- 113V with J = det F = det V.

For the derivative of the isochoric part vwith respect to vwe have

If we construct the strain energy function in terms of the isochoric strains we obtain

(71 )

(72)

In accordance with the representation theorems for scalar isotropic functions with
nonsymmetric tensor argument, the strain energy function is then chosen as

Here fl may be regarded as the usual shear modulus and the convex function U(J) with
U( 1) = 0 contains at least one material parameter, e.g. the bulk modulus. For the curvature
part of the constitutive equations within the two-dimensional case the curvature measures
may be represented by vectors and the simplest curvature energy function is given with the
additional material parameter I

(75)

The experimental determination of the additional constant I is still an open question.
Nevertheless, the solution of inverse problems for parameter identification of mechanical



A micropolar theory of finite deformation and rotation 1077

systems is a rapidly growing area of research. Then the Kirchhoff stress and couple stress
tensors follow as

(76)

Finally, the Euler material operators are computed according to eqn (54) as

r<1/t = 3J1'1, [~-11 ® I] -1J1[dev VI ® I]'ym +J2 U"1 ® I+JU'[I ® 1-J]

rm/t = 2J112b. (77)

7.3. Micropolar flow rule within finite elastoplasticity
The reduced form of the Clausius-Duhem inequality for the purely mechanical

micropolar continuum theory consists of the stress and couple stress power T' : Ye(g)
and pi: .Pe(K) minus the change in free Helmholtz energy t/J. Therefore, the extension of the
Clausius-Duhem inequality within the Boltzmann continuum to the micropolar case is
expressed as

(78)

To describe perfect plasticity the Helmholtz free energy is assumed to depend exclusively
on the elastic parts of the spatial deformation and curvature measures, i.e.

Then the change in Helmholtz free energy follows as

. o'P. o'P.
'P = oVe : ve + ok

e
: ke

with the material rates of the elastic spatial strain and curvature measures

Following standard arguments the elastic constitutive equations are derived as

(79)

(80)

(81)

(82)

I o'P -I

T = PO~'ve
UVe

where the following holds due to isotropy

d
I o'P I

an p = Po ok .v ,
e

(83)

[k'.o'P o'P. I]. I_
e ok

e
- ok. ke • n - o. (84)

Then the dissipation inequality ~9 x ~9 -+ ~+ remains as

The elastic domain in Kirchhoff stress--eouple stress space is defined by

(85)
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(86)

Here the Kirchhoff stresses and couple stresses are restricted by a single yield condition
which is represented in accordance with proposals, for example, in Besdo (1974) or de Borst
(1991) by an isotropic convex scalar valued tensor function

(87)

Following standard procedure the principle of maximum dissipation for the micropolar
case

(88)

renders the associated flow rules for the plastic strain and curvature rates

(89)

Here the Lagrange parameter may be interpreted as the plastic multiplier. Equivalently, the
flow rules are represented in the reference configuration as

(90)

Remark. The extension to incorporate isotropic hardening is straightforward. To this
end, the argument list of the Helmholtz free energy is extended by a scalar strain-like
variable describing pointwise defects such as dislocation pile ups, etc., and the conjugate
thermodynamic force is considered within the yield condition.

Remark. Note the identical structure for the strain part of the flow rule and for the
flow rule developed by Simo and Miehe (1992) within the classical continuum if the
nonsymmetric micropolar stretch ve is substituted by the symmetric elastic Finger tensor be.
Observe further the additive structure of the curvature part in contrast to the multiplicative
structure of the strain part of the flow rule.

Remark. Embedding the approach of Lippmann (1969), Besdo (1974), Miihlhaus and
Vardoulakis (1987) or de Borst (1991) into the current framework the yield condition within
planar micropolar von Mises plasticity may be defined as

where dev t'sym denotes the symmetric part of the Kirchhoff stress deviator, I is a material
constant and Y denotes the yield limit. Then the associated flow rules follow as

(92)

8. BALANCE EQUATIONS

The continuity equation follows as in the classical continuum by requiring the con­
servation of the total mass of a body with dmo = Po d V and dm = p dv rendering immedi­
ately the result Po = Jp since dv = J d V. The material time derivative of the total mass
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yields the material and with j = J[l: g] the spatial representation of the continuity equation
as local form of mass conservation

~ r dmo=~ r dm=O --+ Po=p+p[l:g] =0.
Dt J"o Dt J"

(93)

In the following the balance of linear momentum is formulated. Thereby, the first Cauchy
equation of motion is the consequence of postulating that during deformation the change
oflinear momentum is balanced with the external forces. Therefore, the postulate of balance
of linear momentum is expressed as

D
D r x dmo = r T dA + r B dmo or DD r x dm = r t da+ r B dm. (94)

t J.-*o Jo.-*o Jo~o t J~ Jo~ J~

Here T and t denote the stress vectors referred to dA and da, and B is the vector of body
force per unit mass. Applying the continuity equation, the Gauss theorem together with
the Cauchy theorem T = :E't •Nand t = at. D results in the local form of the first Cauchy
equation of motion

POX = Div :Ell + PoB or px = div at + pB. (95)

Neglecting inertia terms and body forces, the incremental translational equilibrium is
expressed as

0= Div t/j or 0 = div til. (96)

Next, the balance of angular momentum for the micropolar continuum is derived. To
this end, it is postulated that the angular momentum of a body defined as the integral of

the cross product J: [r ® x] with r = x - xo and the spin s = :J. (J) varies exclusively due to
an external torque. Therefore, the postulate of balance of angular momentum results in

Di 3. i 3 i 3D [e: [r ® x] +s]dmo = [e: [r ® T]+Tm] dA+ [e: [r ® B]+Bm] dmo
t ill 0 oill o ill 0

Di 3 i 3 i 3~D [e:[r®x]+s]dm= [e:[r®t]+tm]da+ [e:[r®B]+Bm]dm.
t .-* 0" ill

(97)

Here Tm= M't . Nand tm= rnl. D denote the couple stress vectors referred to dA and da,
Bmis the vector of body couple per unit mass and :J is the second-order inertia tensor of

microrotation per unit mass. Using the continuity equation, the relation J: [r ® x] = 0, the
Gauss theorem, the Cauchy theorem T = :Et

l • N, Tm = M't . N or equivalently t = at. rn,

tm = rnl. D, together with the relation Div(J: [r ® :Etd) = J: [-r+r ® Div :Etd or equivalently

div (J: [r ® at]) = J: [a+ r ® div at] and the first Cauchy equation of motion, the postulate
results in local form as

• 3 D' Mtpos = e: T+ lV 1 +PoBm or ps = J: a+divrnt+pBm. (98)

Neglecting rotational inertia and body couples the incremental rotational equilibrium is
expressed as
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or o=~:[a+divVC1]+divm'. (99)

Spin, couple stresses and body couples are not present in the classical continuum with
only three translational degrees of freedom for every particle. They are typical ingredients
of micropolar continua, e.g. the Cosserat continuum. For the nonpolar case the second
Cauchy equation of motion, the so-called Boltzmann axiom, follows as the symmetry
condition for the Cauchy stress tensor C1skw = o.

9. DIRICHLET VARIATIONAL PRINCIPLE

It is the aim of this section to demonstrate that the stationarity of the total potential
energy n(x, 0) in the framework of hyperelastic micropolar continua

is equivalent to the weak form of the balance of linear and angular momentum together
with Neumann boundary conditions TP = :Et

l • N on oge~ and Tf:, = M'l' N on oge~",. It is
assumed that the conservative loading results in the following representation for the first
variation of the external potential energy

(101)

Here variations are performed with respect to the position vector x and the (pseudo)
rotation vector 0 rendering 15fT it. [at. F+JF], 15K = it. vx<O and sa = a· R. Neglect­
ing translational inertia and body forces the weak form of the balance of linear momentum
follows for all test functions Ju satisfying Ju = 0 on oge'O and using the boundary conditions
TP = M\ . N on oge~ as

i V~Ju::E I d V = [ Ju . TP dA or [V~Ju: C1 dv = [ Ju . tP da. (102)
.AI) JO.Ml; JiA J(1:,."T

In analogy, neglecting rotational inertia and body couples the weak form of the balance of
angular momentum follows for all test functions (axial vectors) ro = axl (JR' Rt

) satisfying
ro = 0 on oge'O and using the boundary conditions Tf:, = Mt

l • N on 0:J6~'" as

or

(103)

Summation of these results renders the weak form of the balance of linear and angular
momentum which is equivalent to the stationarity of n(x, 8), e.g. in the spatial setting

f [[VxJu-a]': t+V~ro: p]dV= f. Ju·tPda+ [ro.tf:,da. (104)
J~o JO~T Je,ATm

Next, the second variation of the total potential energy within the framework of micropolar
continua renders the exact linearization of the generalized Dirichlet variational principle
with major symmetry of the tangent operator and is given by
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(l05)

Recall that variations are performed with respect to the position vector x and the (pseudo)
rotation vector 9. Therefore, inserting

~bO = RI'[[O'Q]'ym'F+OI'~F+QI'bF]

2~bK = til. rOI•Vxro+OI. Vxro] (106)

with ~bR = [0' fi]'ym. R, it is easy to prove that the Hesse matrix associated with the
Dirichlet variational principle generalized to the micropolar case possesses major sym·
metries and is given in the spatial setting by

~bn = La [Vxbu-fi]: [aatf: [Vx~u-Q] +amtf: Vxw]JdV

+ L01'I: [[O'Q]'ym+OI'Vx~u+QI'Vxbu]dV

+ i Vxro: [mm8: Vxw+matf: [Vx~u n]]JdVJtfo

+ i 11": [QI·Vxro+OI·Vxw]dV.Jtfo

(107)

Remark. Note the decomposition of the Hesse matrix into the material and the
geometric contributions, which is typical for all geometrical nonlinear theories.

Remark. Motivated by the above results the incremental variational or virtual power
principle may be expressed as

i [[Vxbu - 0] : i l - n: 1'1 + Vxro: pI + Vxro :I"] d V+ aoxt = 0 (108)Jtfa

with nominal spin rates n= [Q. O]skw + 0 •Vx~u and 2Vxro = n· Vxw - 0 .Vxw.

Remark. The symmetry of the Hesse matrix for nonlinear conservative mechanical
systems, which are equipped with a configuration space involving the rotation group SO(3),
has been shown using different arguments by Simo (1992) and Buffer (1993).

Remark. The connection between the variation of the rotation tensor bti = spn (w) •R
and the underlying variation of the rotation (pseudo) vector () is motivated in Appendix C.

10. SUMMARY

The main thrust of this paper was the formulation of a geometrically exact theory of
finite deformation and finite rotation micropolar elastoplasticity to elaborate a theoretical
background for the numerical implementation of a generalized continuum framework
involving independent rotational degrees of freedom which will be pursued in a forthcoming
paper. The basic motivation has been provided by the success of the geometrically linear
micropolar continuum description in regularizing the pathological mesh size dependence
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of localization computations where shear failure mechanisms playa dominant role. This
concept has been extended to the geometrically nonlinear regime by introducing an
enhanced configuration space consisting of the classical deformation map together with an
independent rotation field. The kinematics of finite micropolar elastoplasticity are then
postulated as multiplicative decompositions of the deformation gradient and the independent
rotation tensor into an elastic and a plastic part, thus allowing the introduction of a set of
different strain and curvature measures. The spatial strain and curvature measures are
conceived as the arguments of a stored energy function governing the hyperelastic response
of a micropolar continuum. By exploiting the Clausius-Duhem inequality together with
the postulate of maximum dissipation associated flow rules for the plastic parts of the
micropolar strain and curvature are derived. Emphasis is placed on the remarkable struc­
tures of these flow rules which mirror the underlying elastoplastic multiplicative decompo­
sition. These results, together with the embedding of the theory within a variational
principle, provide the basis for a numerical implementation into a nonlinear solution scheme
which will constitute the natural continuation of the current research.

Aeknolt'ledgement-The author acknowledges the support of this research by the Deutsche Forschungs­
gemeinschaft under grant STE 238/25-2.
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APPENDIX A

To relate the curvature tensors to the rotation (pseudo) vector 8 introduce the modified rotation (pseudo)
vector

Then the Euler-Rodrigues formula is reformulated as

2
exp(spn(8» = 1+ 1+IP[spn(l1)+spn'(I1)]

and the gradient of the orthogonal tensor R = exp (spn (8» follows as

Straightforward calculations render the material third-order curvature tensor

3 2
K = 1+/1' [spn (V...u)+spn (V...u) 'spn (11) -spn (11)' spn (Vxl1)]

together with its second-order representation

In analogy the spatial third-order curvature tensor is expressed as

3 2
" = I +(J' [spn (Vx l1) +spn (11). spn (Vx l1) -spn (Vxl1)' spn (11)]

together with its second-order representation

(AI)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

Finally the gradient of the modified rotation (pseudo) vector 11may be expressed in terms of the rotation (pseudo)
vector 8 as

(A8)

Example. Define the standard basis E1 in 1R 3 and consider an in-plane rotation about the E 3 axis with 8 = OE 3•

Then

and the second-order curvature measures K and r = ". F have the matrix representation relative to E1

[

COSO -sin 0 0] [0
R= sinO cos 8 0 -.. K=r= 0

o 0 I 8"

o 0]o O.

8., 8,3

(A9)

Then the curvature measures may be reduced to a vector representation with the following properties
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APPENDIX B

Definition. Micropolar push-forward or pull-back induces a change of tensor base vectors

(AIO)

11)*(.),11)*(.) G'; G' g'; g',

11)~( .),11):(') G~; G~ g'; g',

11)';.('),11): (.) G'; G' G;; G~,

G,; G, g,; g,

Gf; Gr g,; g,

G,; G, Gf'; Gr (BI)

while tensor coordinates remain constant. Micropolar push-forward and pull-back may be expressed in short form:
11)*(' ).11)~(.) and 11)';.(') denote micropolar push-forward and 11)* ('),11);"(') and 11);( -) denote micropolar pull-back
of tensorial objects with F; I, Fell, and Fp ; I, respectively.

Definition. We denote the material time derivative by (,)' = D/Dt(,) and the micropolar Lie time derivative
of spatial objects by 2'.('). The micropolar Lie time derivative is performed by applying the micropolar pull-back
11)* (.) performing the material time derivative DJ ut(·) and finally applying the micropolar push-forward 11)* (.)
to the spatial configuration

(B2)

Obviously, the micropolar Lie time derivative denotes the time derivative of the tensor coordinates while the base
vectors remain unchanged.

APPENDIXC

The variation of the rotation tensor 151 = spn (w) -I denotes the underlying variation of the rotation (pseudo)
vector 9. For a motivation reparametrize the Euler-Rodrigues formula

exp (spn (9» = R = [q'-q'q]1+2q®q+2qspn(q)

and the associated update formula for the rotation (pseudo) vector

in terms of unit quaternions

(CI)

(C2)

(C3)

Then superpose an infinitesimal rotation with axial vector ew onto a finite rotation with rotation (pseudo) vector
9 and associated unit quaternions q(9) + q(8) to obtain a one-parameter family of configurations

The directional derivative formula d,q,l, Q and d,qcl,~ 0 renders the variations Dq and Dq of q and q

8q=Hql-spn(q)]'w, Dq=lq-w

and finally the variation of the rotation tensor I follows as

oR. oR
DR = aq 'Dq+ Oij(jq = spn(w)·I.

(C4)

(C5)

(C6)


